### REGISTRIES AND META-ANALYSES

### Gianluigi Savarese, MD PhD, FHFA, FESC

Division of Cardiology, Department of Medicine Karolinska Institutet, Stockholm, Sweden

Heart and Vascular Team, Karolinska University Hospital, Stockholm, Sweden



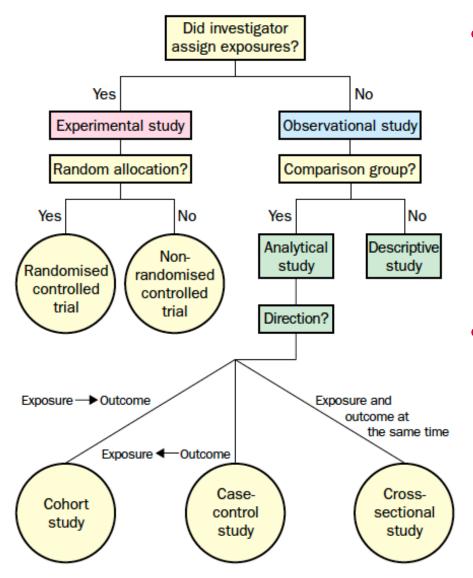


This course is supported by AMGEN and Novartis Pharma AG in the form of an educational grant.

The scientific programme has not been influenced in any way by its sponsor.





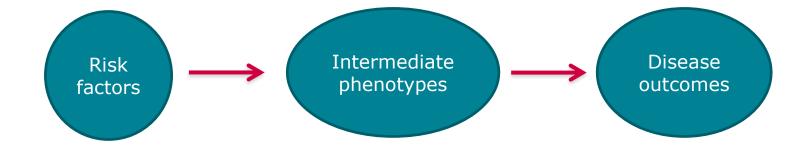



# REGISTRIES and OBSERVATIONAL STUDIES



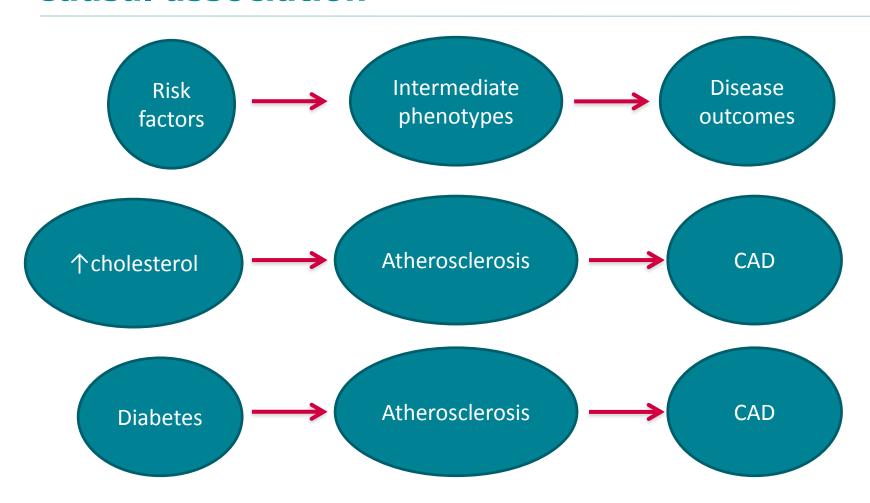


### Type of studies



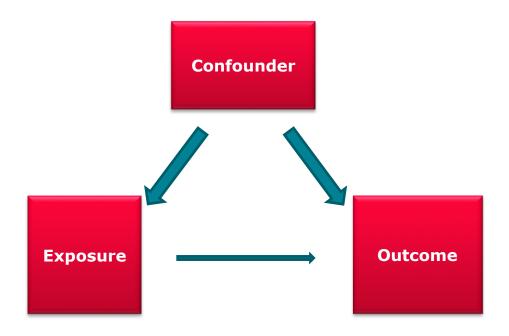

- Descriptive studies
  - describe frequency, natural history and determinants of a condition
- Analytic studies
  - Describe
     association
     between exposure
     and outcome

Cardiovascular Pharmacotherapy ESC Working Group


SOCIETY OF CARDIOLOGY®

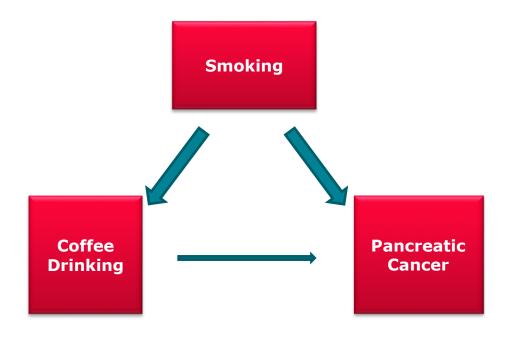
### **Causal association**





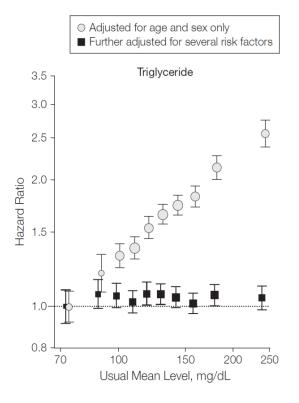

### **Causal association**

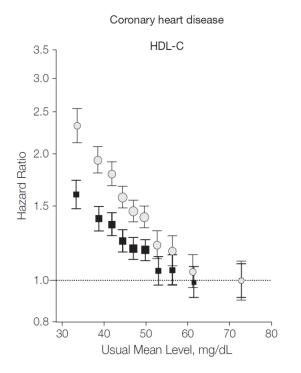


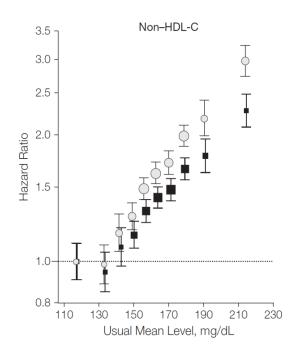



### **Confounders**







### **Confounders**






### **Confounders**







ERFC, JAMA 2009



### Criteria to be a Confounder

- The confounding factor must be associated with both the exposure and the outcome.
- The confounding factor must be distributed unequally among the study groups.
- A confounder cannot be an intermediary step in the causal pathway from the exposure to the outcome of interest.



### **Adjusted analyses**

- **■**Multivariable models
- Matching



### **Propensity score**

The propensity score is defined as a subject's probability of treatment selection, conditional on observed baseline covariates.



### **Propensity score matching**

- Nearest neighbor matching matching to a given treated subject that untreated subject whose propensity score is closest to that of the treated subject.
- Nearest neighbor matching within a specified caliper distance the absolute difference in the propensity scores of matched subjects
  must be below some prespecified threshold (the caliper distance).
- Stratification on the propensity score stratifying subjects according to their estimated propensity score.



#### CLINICAL RESEARCH

Arrhythmia/electrophysiology

### Increased mortality among patients taking digoxin—analysis from the AFFIRM study

Matthew G. Whitbeck, Richard J. Charnigo, Paul Khairy, Khaled Ziada, Alison L. Bailey, Milagros M. Zegarra, Jignesh Shah, Gustavo Morales, Tracy Macaulay, Vincent L. Sorrell, Charles L. Campbell, John Gurley, Paul Anaya, Hafez Nasr, Rong Bai, Luigi Di Biase, David C. Booth, Guillaume Jondeau, Andrea Natale, Denis Roy, Susan Smyth, David J. Moliterno, and Claude S. Elayi\*

Division of Cardiovascular Medicine, Gill Heart Institute University of Kentucky, 326 C.T. Weth

Received 16 April 2012; revised 25 August 2012; accepted 27 September 2012; online publish-ahead

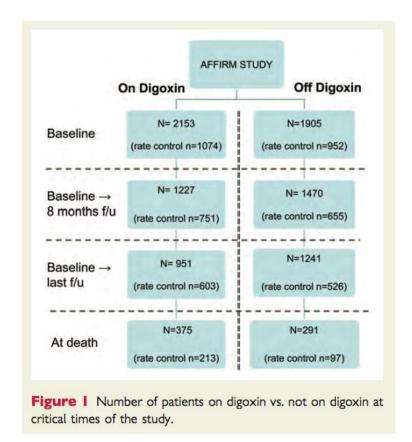
See pages 1465 and 1468 for the editorial comments on this article (doi:1



European Heart Journal (2013) 34, 1489-1497 doi:10.1093/eurheartj/eht120

CLINICAL RESEARCH

Arrhythmia/electrophysiology


### Lack of evidence of increased mortality among patients with atrial fibrillation taking digoxin: findings from post hoc propensity-matched analysis of the AFFIRM trial

Mihai Gheorghiade<sup>1</sup>, Gregg C. Fonarow<sup>2</sup>, Dirk J. van Veldhuisen<sup>3</sup>, John G.F. Cleland<sup>4</sup>, Javed Butler<sup>5</sup>, Andrew E. Epstein<sup>6</sup>, Kanan Patel<sup>7</sup>, Inmaculada B. Aban<sup>7</sup>, Wilbert S. Aronow<sup>8</sup>, Stefan D. Anker<sup>9</sup>, and Ali Ahmed<sup>7,10</sup>\*

<sup>1</sup>Northwestern University, Chicago, IL, USA; <sup>2</sup>University of California, Los Angeles, CA, USA; <sup>3</sup>University Medical Centre, Groningen, The Netherlands; <sup>4</sup>Hull York Medical School, Kingston-Upon-Hull, UK; 5Emory University, Atlanta, GA, USA; 6University of Pennsylvania, Philadelphia, PA, USA; 7University of Alabama at Birmingham, 1720 2nd Avenue South, CH-19, Suite 219, Birmingham 35294-2041 AL, USA; 8New York Medical College, Valhalla, NY, USA; 9Center for Clinical and Basic Research, IRCCS San Raffaele, Rome, Italy; and 10Veterans Affairs Medical Center, Birmingham, AL, USA

Received 25 December 2012; revised 26 February 2013; accepted 13 March 2013; online publish-ahead-of-print 16 April 2013

### AFFIRM study - Whitbeck et al.





### **AFFIRM study – Whitbeck et al.**

Table I Covariates used to generate propensity scores in patients with and without digoxin therapy within 6 months of randomization

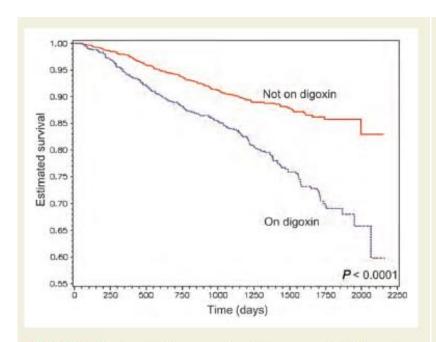
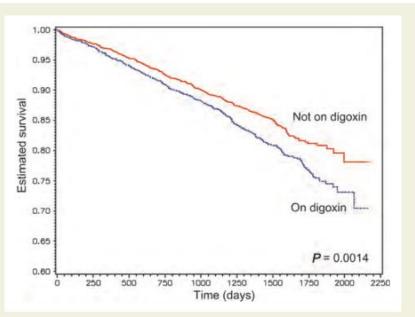
| Covariate                                               | Digoxin $(n = 2153)$ | No digoxin $(n = 1905)$ | P-value  |
|---------------------------------------------------------|----------------------|-------------------------|----------|
| Listani of sanagan autom disease                        | 027 /200/\           | 743 /379/\              | 0.33     |
| History of coronary artery disease                      | 837 (39%)            | 712 (37%)               |          |
| History of angina pectoris                              | 564 (26%)            | 481 (25%)               | 0.49     |
| Prior myocardial infarction                             | 392 (18%)            | 311 (16%)               | 0.11     |
| History of hypertension                                 | 1486 (69%)           | 1390 (73%)              | < 0.001  |
| History of cardiomyopathy                               | 259 (12%)            | 82 (4%)                 | < 0.0001 |
| History of valvular heart disease                       | 318 (15%)            | 186 (10%)               | < 0.0001 |
| History of congenital heart disease                     | 14 (<1%)             | 7 (<1%)                 | 0.27     |
| Symptomatic bradycardia/AV block                        | 156 (7%)             | 127 (7%)                | 0.49     |
| Prior stroke or TIA                                     | 272 (13%)            | 269 (14%)               | 0.16     |
| History of peripheral vascular disease                  | 163 (8%)             | 118 (6%)                | 0.09     |
| History of hepatic or renal disease                     | 130 (6%)             | 101 (5%)                | 0.34     |
| History of pulmonary disease                            | 370 (17%)            | 221 (12%)               | < 0.001  |
| Permanent pacemaker                                     | 130 (6%)             | 120 (6%)                | 0.74     |
| Prior interventional procedure                          | 171 (8%)             | 183 (10%)               | 0.06     |
| Oestrogen/progesterone within 6 months of randomization | 224 (10%)            | 152 (8%)                | < 0.01   |
| Lipid-lowering therapy within 6 months of randomization | 434 (20%)            | 479 (25%)               | < 0.001  |
| Symptoms during AF within 6 months of randomization     | 1969 (91%)           | 1635 (86%)              | < 0.0001 |
| Cardioversion since qualifying episode of AF            | 900 (42%)            | 782 (41%)               | 0.63     |
| Failure of antiarrhythmic drug prior to randomization   | 431 (20%)            | 281 (15%)               | < 0.0001 |
| Hospitalization for qualifying arrhythmia               | 1021 (47%)           | 872 (46%)               | 0.29     |
| Recurrent episodes of AF prior to randomization         | 682 (32%)            | 709 (37%)               | < 0.001  |
| Amiodarone as initial therapy                           | 399 (19%)            | 338 (18%)               | 0.54     |
| Beta-blocker as initial therapy                         | 552 (26%)            | 644 (34%)               | < 0.0001 |
| Diltiazem as initial therapy                            | 419 (19%)            | 364 (19%)               | 0.78     |
| Sotalol as initial therapy                              | 299 (14%)            | 314 (16%)               | 0.02     |
| Verapamil as initial therapy                            | 126 (6%)             | 119 (6%)                | 0.59     |
| Class I drug as initial therapy                         | 298 (14%)            | 226 (12%)               | 0.06     |

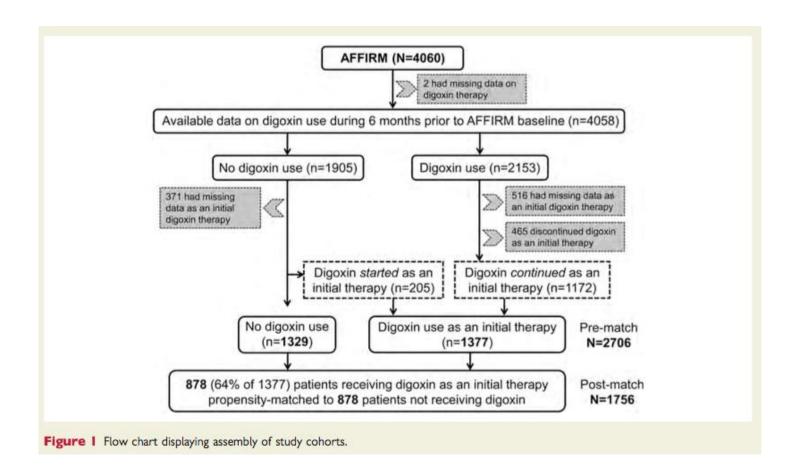
Hx, history; TIA, transient ischaemic attack; ACE, angiotensin converting enzyme; PND, paroxysmal nocturnal dyspnoea.

Atrial fibrillation symptoms included chest pain, diaphoresis, dizziness/light-headedness, dyspnoea, oedema, fast heart rate, fatigue, orthopnea, palpitations, panic, PND, syncope, and other.



### AFFIRM study - Whitbeck et al.



Figure 2 Kaplan—Meier curves for all-cause mortality based on digoxin use during the study. Shown are Kaplan—Meier curves for all-cause mortality in patients always or never on digoxin during the study. P-value for this comparison is <0.0001 by the likelihood ratio test.



**Figure 3** Kaplan—Meier curves for all-cause mortality based on digoxin use at baseline. Kaplan—Meier curves depict all-cause mortality in patients receiving or not receiving digoxin within the six months preceding randomization. *P*-value for this comparison is 0.0014 by the likelihood ratio test.



### AFFIRM study - Gheorghiade et al.





### AFFIRM study - Gheorghiade et al.

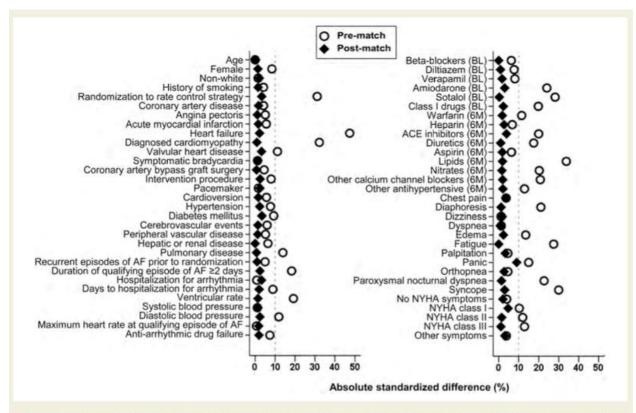



Figure 2 Love plot displaying absolute standardized differences for 59 baseline characteristics between patients with atrial fibrillation receiving and not receiving digoxin as initial baseline therapy in AFFIRM, before and after propensity score matching (NYHA = New York Heart Association; BL = Therapy at baseline or at randomization to rate vs. rhythm control strategies; 6M = Therapy during 6 months prior to randomization to rate vs. rhythm control strategies).



Table | Baseline characteristics by the use of digoxin as initial therapy in patients with atrial fibrillation during randomization (to rate vs. rhythm control strategy) in AFFIRM, before and after propensity-matching

| Variables                                                          | Before propensity-matching |                      |         | After propensity-matching |                      |         |
|--------------------------------------------------------------------|----------------------------|----------------------|---------|---------------------------|----------------------|---------|
| Mean ± SD or n (%)                                                 | Digoxin use                |                      | P-value | Digoxin use               |                      | P-value |
|                                                                    | No (n = 1329)              | Yes (n = 1377)       |         | No (n = 878)              | Yes (n = 878)        |         |
| Age (years)                                                        | 70 ± 8                     | 70 ± 8               | 0.998   | 70 ± 8                    | 70 ± 8               | 0.970   |
| Age 65 years or older                                              | 1007 (76)                  | 1053 (77)            | 0.670   | 679 (77)                  | 690 (79)             | 0.560   |
| Female                                                             | 485 (37)                   | 559 (41)             | 0.028   | 349 (40)                  | 343 (39)             | 0.803   |
| Non-whites                                                         | 151 (11)                   | 163 (12)             | 0.699   | 104 (12)                  | 98 (11)              | 0.713   |
| History of smoking                                                 | 147 (11)                   | 171 (12)             | 0.273   | 99 (11)                   | 95 (11)              | 0.813   |
| Randomization to rate control strategy                             | 717 (54)                   | 949 (69)             | < 0.001 | 356 (41)                  | 342 (39)             | 0.506   |
| Past medical history                                               |                            |                      |         |                           |                      |         |
| Coronary artery disease                                            | 478 (36)                   | 523 (38)             | 0.278   | 324 (37)                  | 317 (36)             | 0.761   |
| Angina pectoris                                                    | 317 (24)                   | 359 (26)             | 0.183   | 216 (25)                  | 212 (24)             | 0.866   |
| Acute myocardial infarction                                        | 204 (15)                   | 240 (17)             | 0.144   | 141 (16)                  | 136 (16)             | 0.792   |
| Heart failure                                                      | 161 (12)                   | 428 (31)             | < 0.001 | 147 (17)                  | 140 (16)             | 0.664   |
| Valvular heart disease                                             | 136 (10)                   | 191 (14)             | 0.004   | 96 (11)                   | 105 (12)             | 0.538   |
| Symptomatic bradycardia                                            | 84 (6)                     | 91 (7)               | 0.761   | 57 (7)                    | 54 (6)               | 0.847   |
| Coronary artery bypass graft                                       | 157 (12)                   | 183 (13)             | 0.247   | 111 (13)                  | 109 (12)             | 0.942   |
| Interventional procedure                                           | 126 (10)                   | 100 (7)              | 0.037   | 76 (9)                    | 70 (8)               | 0.661   |
| Pacemaker implantation                                             | 79 (6)                     | 87 (6)               | 0.685   | 52 (6)                    | 57 (7)               | 0.699   |
| Cardioversion                                                      | 526 (40)                   | 507 (37)             | 0.140   | 324 (37)                  | 331 (38)             | 0.762   |
| Hypertension                                                       | 979 (74)                   | 967 (70)             | 0.047   | 640 (73)                  | 631 (72)             | 0.675   |
| Diabetes mellitus                                                  | 241 (18)                   | 301 (22)             | 0.015   | 168 (19)                  | 180 (21)             | 0.513   |
| Cerebrovascular events                                             | 186 (14)                   | 165 (12)             | 0.119   | 114 (13)                  | 110 (13)             | 0.831   |
| Peripheral vascular disease                                        | 82 (6)                     | 103 (8)              | 0.177   | 64 (7)                    | 61 (7)               | 0.856   |
| Hepatic or renal disease                                           | 68 (5)                     | 91 (7)               | 0.099   | 50 (6)                    | 50 (6)               | 1.000   |
| Pulmonary disease                                                  | 159 (12)                   | 232 (17)             | < 0.001 | 123 (14)                  | 125 (14)             | 0.946   |
| Diagnosed cardiomyopathy                                           | 14 (1)                     | 103 (8)              | < 0.001 | 14 (2)                    | 15 (2)               | 1.000   |
| Recurrent episodes of AF prior to randomization                    | 502 (38)                   | 487 (35)             | 0.194   | 303 (35)                  | 307 (35)             | 0.880   |
| Duration of qualifying episode of AF ≥ 2 days                      | 867 (65)                   | 1014 (74)            | < 0.001 | 592 (67)                  | 602 (69)             | 0.635   |
| Hospitalization for arrhythmia                                     | 566 (43)                   | 592 (43)             | 0.832   | 352 (40)                  | 366 (42)             | 0.524   |
| Days to hospitalization for arrhythmia                             | 2.0 + 3.3                  | 2.3 + 3.6            | 0.020   | 2.0 ± 3.4                 | 2.1 ± 3.4            | 0.661   |
|                                                                    |                            |                      |         |                           |                      |         |
| Symptoms during atrial fibrillation in the last 6 mo<br>Chest pain | nths<br>290 (22)           | 337 (25)             | 0.102   | 194 (22)                  | 194 (22)             | 1.000   |
| Diaphoresis                                                        | 231 (17)                   | 281 (20)             | 0.102   | 163 (19)                  |                      | 0.902   |
| Diaphoresis                                                        | 408 (31)                   | 475 (35)             | 0.045   | 286 (33)                  | 160 (18)<br>279 (32) | 0.756   |
| Dyspnoea                                                           | 626 (47)                   | 473 (33)<br>813 (59) | < 0.035 |                           | 458 (52)             | 0.756   |
| 7 T                                                                |                            |                      |         | 445 (51)                  |                      | 1.000   |
| Leg swelling                                                       | 178 (13)                   | 335 (24)             | < 0.001 | 143 (16)                  | 144 (16)             |         |
| Fatigue                                                            | 651 (49)                   | 810 (59)             | < 0.001 | 473 (54)                  | 463 (53)             | 0.667   |
| Palpitation                                                        | 603 (45)                   | 704 (51)             | 0.003   | 416 (47)                  | 424 (48)             | 0.734   |
| Panic                                                              | 123 (9)                    | 156 (11)             | 0.076   | 80 (9)                    | 87 (10)              | 0.626   |
| Orthopnoea                                                         | 133 (10)                   | 231 (17)             | < 0.001 | 106 (12)                  | 95 (11)              | 0.447   |
| Paroxysmal nocturnal dyspnea                                       | 57 (4)                     | 118 (9)              | < 0.001 | 46 (5)                    | 44 (5)               | 0.911   |
| Syncope                                                            | 41 (3)                     | 59 (4)               | 0.098   | 32 (4)                    | 35 (4)               | 0.801   |
| Other symptoms                                                     | 130 (10)                   | 120 (9)              | 0.338   | 78 (9)                    | 87 (10)              | 0.510   |
| Current heart failure status by NYHA class sympto                  |                            |                      |         |                           |                      |         |
| Class I                                                            | 102 (8)                    | 192 (14)             |         | 80 (9)                    | 84 (10)              |         |
| Class II                                                           | 56 (4)                     | 130 (9)              | < 0.001 | 44 (5)                    | 48 (6)               | 0.484   |
| Class III                                                          | 11 (1)                     | 34 (3)               |         | 11 (1)                    | 9 (1)                |         |



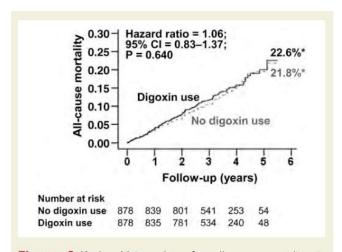

### AFFIRM study - Gheorghiade et al.

Table 3 Association of digoxin use as initial therapy at baseline with outcomes in a propensity-matched cohort of patients with atrial fibrillation enrolled in the AFFIRM trial

| Post-match (n = 1756)              | Events (%)                              |                   | Hazard ratio (95% CI) | P-value |
|------------------------------------|-----------------------------------------|-------------------|-----------------------|---------|
|                                    | Digoxin use as initial baseline therapy |                   |                       |         |
|                                    | No (n = 878) (%)                        | Yes (n = 878) (%) |                       |         |
| All-cause mortality <sup>a</sup>   | 118 (13)                                | 124 (14)          | 1.06 (0.83-1.37)      | 0.640   |
| Cardiovascular                     | 56 (6)                                  | 63 (7)            | 1.13 (0.79-1.63)      | 0.494   |
| Non-cardiovascular                 | 48 (6)                                  | 51 (6)            | 1.08 (0.73-1.60)      | 0.709   |
| All-cause hospitalization          | 516 (59)                                | 495 (56)          | 0.96 (0.85-1.09)      | 0.510   |
| Non-fatal arrhythmias <sup>b</sup> | 10 (1)                                  | 9 (1)             | 0.90 (0.37-2.23)      | 0.827   |

<sup>&</sup>lt;sup>a</sup>The sum of cause-specific deaths may not equal total deaths as some deaths were unclassified.

bincident non-fatal arrhythmias included torsades de pointes ventricular tachycardia, sustained ventricular tachycardia, and resuscitated cardiac arrest due to ventricular tachycardia, ventricular fibrillation, electromechanical dissociation, bradycardia, or other reasons.



**Figure 3** Kaplan–Meier plots for all-cause mortality in propensity-matched AFFIRM patients with atrial fibrillation receiving and not receiving digoxin as initial therapy at baseline. \*These percentages derived from Kaplan–Meier analysis are different from raw percentages presented in *Table 3*.

Gheorghiade et al. European Heart Journal (2013) 34, 1489-1497



### **Biases**

### Reverse causation?

### Indication bias?



## When 'digoxin use' is not the same as 'digoxin use': lessons from the AFFIRM trial

#### Sabina A. Murphy\*

TIMI Study Group, Brigham and Women's Hospital, 350 Longwood Ave, First Office Floor, Boston, MA 02115, USA

Online publish-ahead-of-print 16 April 2013

### **Table I** Summary of differences between AFFIRM studies in the primary methods used for evaluating the relationship between digoxin use and all-cause mortality

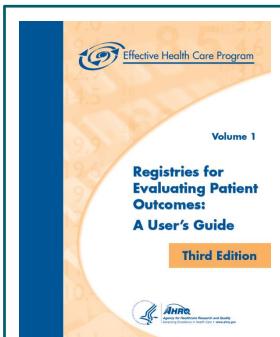
|                                                            | Whitbeck et al.                                                                            | Gheorghiade et al.                                                                                            |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Study design                                               | Non-randomized, observational analysis using<br>data from randomized AFFIRM trial          | Non-randomized, observational analysis using<br>data from randomized AFFIRM trial                             |
| Time point digoxin used assessed                           | Time-varying covariate, throughout study                                                   | Fixed, at baseline only                                                                                       |
| Cohort                                                     | Full cohort (n = 4058)                                                                     | Selected cohort ( $n = 1756$ )                                                                                |
| Propensity method                                          | Adjustment                                                                                 | Matching <sup>a</sup>                                                                                         |
| Primary HR for digoxin and all-cause mortality association | HR 1.41, 95% CI 1.19-1.67; P < 0.001                                                       | HR 1.06, 95% CI 0.83-1.37; P = 0.640                                                                          |
| Main conclusion from authors                               | Digoxin associated with significant increase in<br>all-cause mortality in patients with AF | No evidence of increased mortality associated with digoxin use as baseline initial therapy in patients with A |

AF, atrial fibrillation; CI, confidence interval; HR, hazard ratio.

<sup>a</sup>Propensity adjustment used for sensitivity analysis.



### **Conclusions**


# What conclusions can be drawn from these two analyses?

- •Given the non-randomized, observational design of both studies, the findings should be considered hypothesis generating
- •Even sophisticated statistical methods such as propensity analysis cannot replace randomization
- •It to understand the cohorts and the how treatment groups are defined, because sometimes digoxin use is not the same as digoxin use

Murphy. European Heart Journal (2013) 34, 1465



### **Suggestions:**



### READ!!!!

Registries for Evaluating Patient Outcomes, 3 edition A User's Guide

### USE!!!!

STROBE Statement – when you write a paper using observational data!!!



### **Meta-analyses**





### What is a Systematic Review?

"A review that is conducted according to clearly stated, scientific research methods, and is designed to minimize biases and errors inherent to traditional, narrative reviews."



### Why are Systematic Reviews important?

To remain up to date on a topic

Individual studies with conflicting conclusions



### **Characteristics of Systematic Reviews**

### Two possible approaches:

- Qualitative synthesis (systematic review)
- Statistical synthesis of data (meta-analysis) if appropriate and possible



### **Hypothesis**

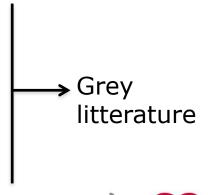
Hypotheses must be conceived a priori.



### Four steps

- Identify studies (appropriate literature search)
- Determine eligibility apriori
  - Inclusion criteria
  - Exclusion criteria
- Abstract data from the studies
- Statistical analysis (if possible)




### **Literature Search**

- Literature search strategy has to be defined apriori
- List of popular databases to search
  - Pubmed/Medline
  - Embase
  - Cochrane Review
  - ISI Web of Science
  - SCOPUS

#### Other potential sources

- Trial registries (clinicaltrials.gov)
- Abstracts from meetings
- Personal references
- References from published reviews/meta-analysis/trials
- Contact experts
- Web, eg. Google (http://scholar.google.com)







### **Literature Search - Risk of Bias**

- English-language bias papers in languages other than English are more likely to be excluded
- Citation bias studies with significant or positive results vs. those with inconclusive or negative results are more likely to be referenced in other publications, thus are more likely to be identified.
- Publication Bias studies with positive results are more likely to be published



### **Data Collection**

- The variables of interest and, thus, the list of data to be extracted should be decided a priori.
- A data extraction form should be used so that the same data are extracted from each study and by all the reviewers.
- At least two independent readers should perform the literature search and the data extraction in order to be <u>reproducible</u> and <u>accurate</u>
- If two reviewers disagree about including or not a study, disagreement between readers could be solved by agreements or by a third reviewer

Pharmacotherapy

### **Data Collection**

- Study characteristics (year and journal of publication, number of patients in each arm, treatments performed, duration of follow-up)
- Demographics (age, % males or females)
- Clinical characteristics (traditional CV risk factors % hypertensive pts, % diabetic pts, % dyslipidemic pts, % smokers concomitant treatments, comorbidities, etc)
- Outcomes (all-cause death, CV death, MI, stroke, etc)



### **Quality Assessment**

"The <u>validity</u> of a systematic review ultimately depends on the scientific method of the retrieved studies and the reporting of data."



#### THE SCORING SYSTEM USED FOR CLINICAL EVIDENCE REVIEWS

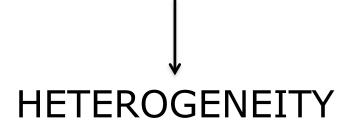
| Type of evidence                              |                                                                                 |                                                                                                                                                                                                             |  |  |  |
|-----------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Initial score based<br>on type of<br>evidence | +4                                                                              | RCTs/ SR of RCTs, +/- other types of evidence                                                                                                                                                               |  |  |  |
|                                               | +2                                                                              | Observational evidence (e.g., cohort, case-control)                                                                                                                                                         |  |  |  |
| Quality                                       |                                                                                 |                                                                                                                                                                                                             |  |  |  |
| Based on                                      | Blin                                                                            | Blinding and allocation process                                                                                                                                                                             |  |  |  |
|                                               | Foll                                                                            | Follow-up and withdrawals                                                                                                                                                                                   |  |  |  |
|                                               | Sparse data                                                                     |                                                                                                                                                                                                             |  |  |  |
|                                               | Other methodological concerns (e.g., incomplete reporting, subjective outcomes) |                                                                                                                                                                                                             |  |  |  |
| Score                                         | 0                                                                               | No problems                                                                                                                                                                                                 |  |  |  |
|                                               | -1                                                                              | Problem with 1 element                                                                                                                                                                                      |  |  |  |
|                                               | <b>-2</b>                                                                       | Problem with 2 elements                                                                                                                                                                                     |  |  |  |
|                                               | -3                                                                              | Problem with 3 or more elements                                                                                                                                                                             |  |  |  |
| Consistency                                   |                                                                                 |                                                                                                                                                                                                             |  |  |  |
| Based on                                      | Degree of consistency of effect between or within studies                       |                                                                                                                                                                                                             |  |  |  |
| Score                                         | +1                                                                              | Evidence of dose response across or within studies (or inconsistency across studies is explained by a dose response); also 1 point added if adjustment for confounders would have increased the effect size |  |  |  |
|                                               | 0                                                                               | All/most studies show similar results                                                                                                                                                                       |  |  |  |
|                                               | -1                                                                              | Lack of agreement between studies (e.g., statistical heterogeneity between RCTs, conflicting results)                                                                                                       |  |  |  |
| Directness                                    |                                                                                 |                                                                                                                                                                                                             |  |  |  |
| Based on                                      | The                                                                             | e generalisability of population and outcomes from each study to our population of interest                                                                                                                 |  |  |  |
| Score                                         | 0                                                                               | Population and outcomes broadly generalisable                                                                                                                                                               |  |  |  |
|                                               | -1                                                                              | Problem with 1 element                                                                                                                                                                                      |  |  |  |
|                                               | <del>-2</del>                                                                   | Problem with 2 or more elements                                                                                                                                                                             |  |  |  |
| Effect size                                   |                                                                                 |                                                                                                                                                                                                             |  |  |  |
| Based on                                      | The                                                                             | e reported OR/RR/HR for comparison                                                                                                                                                                          |  |  |  |
| Score                                         | 0                                                                               | Not all effect sizes >2 or <0.5 and significant; or if OR/RR/HR not significant                                                                                                                             |  |  |  |
|                                               | +1                                                                              | Effect size >2 or <0.5 for all studies/meta-analyses included in comparison and significant                                                                                                                 |  |  |  |
|                                               | +2                                                                              | Effect size >5 or <0.2 for all studies/meta-analyses included in comparison and significant                                                                                                                 |  |  |  |
|                                               |                                                                                 |                                                                                                                                                                                                             |  |  |  |

The final GRADE score: we use 4 categories of evidence quality based on the overall GRADE scores for each comparison: high (at least 4 points overall), moderate (3 points), low (2 points), and very low (one or less).

# **Quality Assessment**

# GRADE

Grading of Recommendations Assessment, Development and Evaluation


Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schünemann HJ; GRADE Working Group. What is "quality of evidence" and why is it important to clinicians? BMJ. 2008 May 3;336(7651):995-8.



#### **Data Synthesis**

Data could be summarized quantitatively if study designs are not too different in:

- outcome definition (composite outcome?);
- population sizes
- population characteristics
- interventions





#### What is meta analysis?

Quantitative approach for <u>systematically</u> combining results of <u>previous research</u> to arrive at <u>conclusions</u> about the body of research.



# **Protocols - PRISMA**

| Section/topic                      | #  | Checklist item                                                                                                                                                                                                                                                                                              | Reported on page # |  |  |
|------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
| TITLE                              |    |                                                                                                                                                                                                                                                                                                             |                    |  |  |
| Title                              | 1  | Identify the report as a systematic review, meta-analysis, or both.                                                                                                                                                                                                                                         |                    |  |  |
| ABSTRACT                           |    |                                                                                                                                                                                                                                                                                                             |                    |  |  |
| Structured summary                 | 2  | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. |                    |  |  |
| INTRODUCTION                       |    |                                                                                                                                                                                                                                                                                                             |                    |  |  |
| Rationale                          | 3  | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                                              |                    |  |  |
| Objectives                         | 4  | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).                                                                                                                                                  |                    |  |  |
| METHODS                            |    |                                                                                                                                                                                                                                                                                                             |                    |  |  |
| Protocol and registration          | 5  | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.                                                                                                                               |                    |  |  |
| Eligibility criteria               | 6  | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                                                      |                    |  |  |
| Information sources                | 7  | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.                                                                                                                                  |                    |  |  |
| Search                             | 8  | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                                               |                    |  |  |
| Study selection                    | 9  | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                                                   |                    |  |  |
| Data collection process            | 10 | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.                                                                                                                                  |                    |  |  |
| Data items                         | 11 | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                                                                                                       |                    |  |  |
| Risk of bias in individual studies | 12 | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.                                                                                      |                    |  |  |
| Summary measures                   | 13 | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                                                                                                               |                    |  |  |
| Synthesis of results               | 14 | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., $1^2$ ) for each meta-analysis.                                                                                                                                                   |                    |  |  |





#### PRISMA 2009 Checklist

| Section/topic                 | #  | Checklist item                                                                                                                                                                                           | Reported on page # |  |  |  |  |
|-------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|
| Risk of bias across studies   | 15 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                             |                    |  |  |  |  |
| Additional analyses           | 16 | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.                                                         |                    |  |  |  |  |
| RESULTS                       |    |                                                                                                                                                                                                          |                    |  |  |  |  |
| Study selection               | 17 | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                          |                    |  |  |  |  |
| Study characteristics         | 18 | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.                                                             |                    |  |  |  |  |
| Risk of bias within studies   | 19 | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).                                                                                                |                    |  |  |  |  |
| Results of individual studies | 20 | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. |                    |  |  |  |  |
| Synthesis of results          | 21 | Present results of each meta-analysis done, including confidence intervals and measures of consistency.                                                                                                  |                    |  |  |  |  |
| Risk of bias across studies   | 22 | Present results of any assessment of risk of bias across studies (see Item 15).                                                                                                                          |                    |  |  |  |  |
| Additional analysis           | 23 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).                                                                                    |                    |  |  |  |  |
| DISCUSSION                    |    |                                                                                                                                                                                                          |                    |  |  |  |  |
| Summary of evidence           | 24 | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).                     |                    |  |  |  |  |
| Limitations                   | 25 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).                                            |                    |  |  |  |  |
| Conclusions                   | 26 | Provide a general interpretation of the results in the context of other evidence, and implications for future research.                                                                                  |                    |  |  |  |  |
| FUNDING                       |    |                                                                                                                                                                                                          |                    |  |  |  |  |
| Funding                       | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.                                                               |                    |  |  |  |  |
|                               |    |                                                                                                                                                                                                          |                    |  |  |  |  |

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

#### Types of Meta-analysis/Terminology

Meta-analysis → Extract data from published reports
(aggregated data meta-analysis)

Frequentist Approach

Bayesian Approach

Network

Collect individual patient data (IPD)



#### **Meta-analysis: Statistical Models**

#### 2 statistical models:

- Fixed effects:
  - 1. Effect of treatment is the same for every study;
  - 2. Low heterogeneity
- Random effects:
  - 1. True effect estimate for each study varies;
  - 2. High heterogeneity
  - 3. Provide larger CI



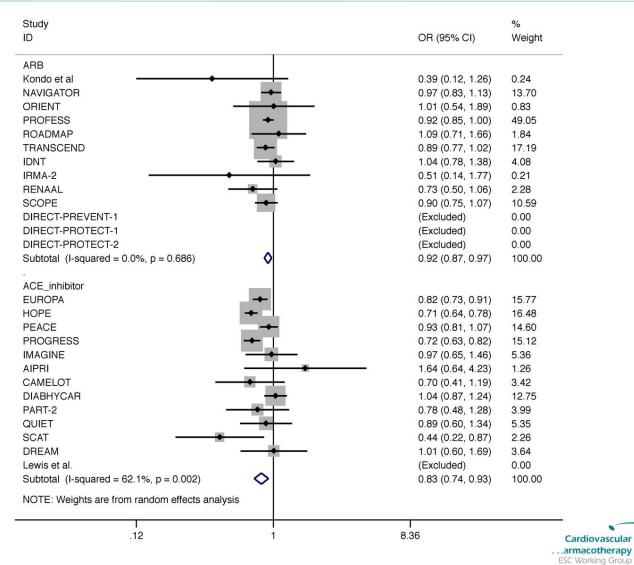
# Heterogeneity

 Clinical heterogeneity: variability in the participants, interventions and outcomes studied

+

Methodological heterogeneity: variability in study design

Statistical heterogeneity




# Heterogeneity assessment

- Do the confidence intervals for the results of individual studies have poor overlap?
- Check the Cochrane Q statistic: a p value decided apriori defines the presence of significant heterogeneity.
- Check I<sup>2</sup> statistic: describes the percentage of variation across studies that is due to heterogeneity rather than chance.
- 1. 0% to 40%: heterogeneity might not be important;
- 2.30% to 60%: may represent moderate heterogeneity;
- 3.50% to 90%: may represent substantial heterogeneity;
- 4.75% to 100%: considerable heterogeneity.

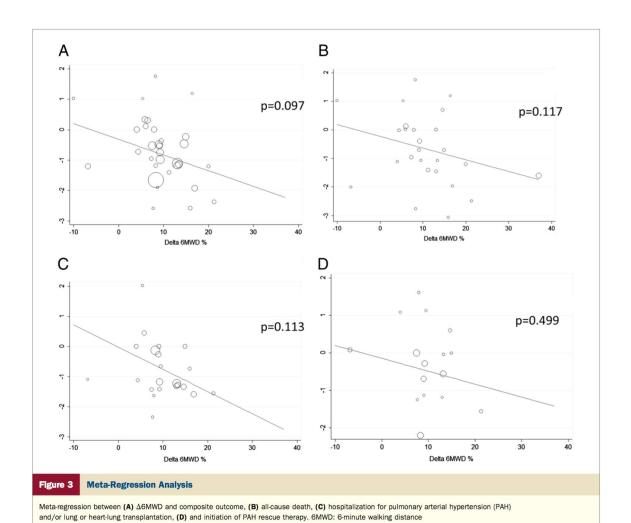


#### **Heterogeneity assessment**

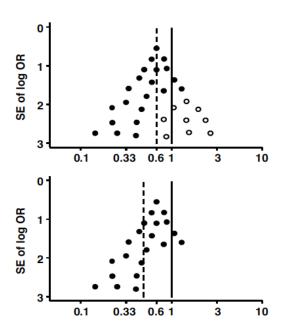


# Strategies for addressing heterogeneity

- Check again that the data are correct
- Do not do a meta-analysis
- Explore heterogeneity (subgroup analysis, metaregression)
- Ignore heterogeneity (there is no an intervention effect but a distribution of intervention effects)
- Perform a random-effects meta-analysis (when heterogeneity cannot be explained)
- Change the effect measure (different scales in different studies)
- Exclude studies (outlying studies)




# **Sensitivity analysis**


- One study removed meta-analysis
- Meta-regression analysis



# **Meta-Regression Analysis**



#### **Publication Bias**



Symmetrical plot in the absence of bias (open circles indicate smaller studies showing no beneficial effects)

Asymmetrical plot in the presence of publication bias (smaller studies showing no beneficial effects are missing)



#### **Publication Bias**

| Reference         | Basis of test                                                                                                                                              |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Begg 1994)       | Rank correlation between standardized intervention effect and its standard error.                                                                          |
| (Egger 1997a)     | Linear regression of intervention effect estimate against its standard error, weighted by the inverse of the variance of the intervention effect estimate. |
| (Tang 2000)       | Linear regression of intervention effect estimate on 1 /ÖN <sub>tot</sub> , with weights N <sub>tot</sub> .                                                |
| (Macaskill 2001)* | Linear regression of intervention effect estimate on $N_{tot}$ , with weights $S \times F/N_{tot}$ .                                                       |
| (Deeks 2005)*     | Linear regression of log odds ratio on 1/ÖESS with weights ESS, where effective sample size ESS = $4N_E \times N_C / N_{tot}$ .                            |
| (Harbord 2006)*   | Modified version of the test proposed by Egger et al., based on the 'score' (O–E) and 'score variance' (V) of the log odds ratio.                          |
| (Peters 2006)*    | Linear regression of intervention effect estimate on 1/N <sub>tot</sub> , with weights S×F/N <sub>tot</sub> .                                              |
| (Schwarzer 2007)* | Rank correlation test, using mean and variance of the non-central hypergeometric distribution.                                                             |
| (Rücker 2008)     | Test based on arcsine transformation of observed risks, with explicit modelling of between-study heterogeneity.                                            |

<sup>\*</sup> Test formulated in terms of odds ratios, but may be applicable to other measures of intervention effect.



# Thank you



Are you <40 years?

Cardiovascular Pharmacotherapists and Trialists of Tomorrow (CPTT)

A lot of benefits for you!!!

